
1

Robotics With the XBC

Controller
Session 9

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

Â The student will receive a comprehensive
review of the the first 8 sessions of the
course.

Â The student will learn very basic
odometry and implement this by writing a
function that will cause his or her robot to
travel a set distance in a straight line.

3

Final Exam Review

ÂSession 1

ÂKnow that all IC programs begin
execution at the main() function.

ÂMost common error in C programming
is forgetting the ; at the end of function
calls.

4

Final Exam Review
Continued

Â Session 2
Â motor(<motor_#>, <speed>) function controls XBC motors

in PWM mode.

Â Know how to recognize and what to do if a motor wire
is plugged in backwards.

Â Know the basic Boolean operators and how they
function.
Å< less than
Å <= less than or equal

Å > greater than

Å >= greater than or equal

Å == equal

Å != not equal

Å && and

Å || or

Å ! not

5

Final Exam Review
Continued

Â Session 2 continued
Â Know the structure of an if-then statement

if (<expression>)
<statement-1>

if (a > 10)

{

forward();

}

else

{

backward();

}

6

Final Exam Review
Continued

ÂSession 2 continued
Â Know the structure of a while loop

while (<expression>)

<statement>

while(a_button() == 0)

{

perform cool things

}

7

Final Exam Review
Continued

ÂSession 3

ÂKnow the difference between an analog
and a digital sensor.

ÅAnalog sensors return a range of values.

Å8 bit resolution = 0 ï255

Å12 bit resolution = 0 ï4096

ÅPorts 0-7

ÅDigital sensors return either a 0 or a 1 (on or off)

ÅPorts 8-15

8

Final Exam Review
Continued

Â Session 3.
Â Know the 4 basic data types in IC.

Å16 - bit Integers .
Å 16-bit integers are signified by the type indicator int . They are

signed integers, and may be valued from -32,768 to +32,767
decimal.

Å32 - bit Integers.
Å 32-bit integers are signified by the type indicator long . They are

signed integers, and may be valued from -2,147,483,648 to
+2,147,483,647 decimal.

Å32 - bit Floating Point Numbers.
Å Floating point numbers are signified by the type indicator float . They

have approximately seven decimal digits of precision and are valued
from about 10^-38 to 10^38.

Å8 - bit Characters.
Å Characters are an 8-bit number signified by the type indicator char ;

characters can be used to refer to arbitrary 8-bit numbers.

9

Final Exam Review
Continued

ÂSession 3 Continued
ÂKnow variable naming rules
ÅNames are case sensitive

ÅUnderscore character allowed _
ÅUsually used to separate words

Årange_to_object

Åletters, numbers and the underscore may
be used, but may not start with a number

ÅC keywords such as if, while, for etcé
cannot be used as names

10

Final Exam Review

ÂSession 3 Continued

ÂKnow variable scoping rules

ÅIf declared within a function or as an
argument to a function it is local to that
function and not available outside of it.

ÅIf declared outside of a function then it is
global and available to all functions.

ÅLocal variables take precedence if a local
and global variable have the same name.

11

Final Exam Review
Continued

Â Session 3 Continued
Â Know the syntax and use of a for-next loop

for (<expr-1>;<expr-2>;<expr-3>)
<statement>

<expr-1> is an assignment

<expr-2> is a relational expression

<expr-3> is an increment or decrement of some manner

<statement> is a group of C statements to be executed each
time through the loop if <expr-2> evaluates to TRUE.

for (count = 0; count < 100; count++)
{ do this stuff }

12

Final Exam Review
Continued

Â Session 4
Â Know what user defined functions are and

how to implement them.
ÅA function is a separate block of code with a unique

name that does a particular job.

ÅFunctions let you chop up a long program into
named sections.

ÅFunctions can accept parameters and can return a
result.

Å All code belonging to a function is contained in curly
braces {}.

int add_two_number(int num1, int num2)

{

return num1+num2;

}

13

Final Exam Review
Continued

ÂKnow how to use the IC
preprocessor.
Â#use brings in the functions defined in

another file.
Å#use ñxbccamlib.icò

Â#define sets a macro.
ÅA macro is local to the file in which it is defined.

ÅEssentially it sets one item equal to something.

ÅUnlike variables they CANNOT be changed later.

ÅBefore the program is compiled the preprocessor replaces
every instance of a macro name with its value.

14

Final Exam Review
Continued

Â Session 4 Continued
Â Know the basic functions for reading XBC

buttons
ÅEach function returns 0 if NOT pressed and 1 if

pressed.
Åint a_button()

Åint b_button()

Åint up_button()

Åint down_button()

Åint right_button()

Åint left_button()

Åint r_button() ïThe top right button

Åint l_button() ïThe top left button

Åint any_button()

15

Final Exam Review
Continued

Â Session 5
Â Know the difference between a servo motor

and a normal DC motor.
ÅServos have a ñstopò and do not rotate 360 degrees.

ÅServos are sent positions to move to.

ÅActivate all servos with the function enable_servos()
ÅOnly do this once

ÅDO NOT USE IN A LOOP

ÅDeactivate servos with the disable_servos()

ÅUse the set_servo_position function to move a servo
to a desired position.
Åint set_servo_position(int srv, int pos)

Åsrv = Servo port number 0-3

Åpos= position(10-245) is ~0 - 180 degrees

16

Final Exam Review

Â Session 5 Continued

ÂKnow the difference between óbang-bangô and
proportional control.

ÅñBang-bangò control uses on/off extremes.

ÅProportional control adjusts the output or response
of the robot as the sensor readings change.

ÅExample:

speed= -(int)((float)analog(0)/2.55) + 100;

motor(0,speed);

motor(2,speed);

17

Final Exam Review

Â Session 6
Â Know what arrays are and how to declare them.

ÅArrays store a list of data.
ÅAll data in the array MUST be of the same type.

ÅEvery array has a length or the number of elements it can
hold.

ÅArrays in C are 0 based ïthe first array element is the 0ôth
element.

ÅThe data stored in the elements of an array can be set and
retrieved in the same manner as for other variables.

void main()
{

int an_array[20];
int position = 4;

an_array[10] = 200;
an_array[position] = 18;

}

18

Final Exam Review
Continued

Â Session 6 continued.
Â Know how many color blobs and how many

channels the XBC can track.
ÅAt LEAST 3 blobs on 3 separate channels.

ÂKnow that you must #use ñxbccamlib.icò
before using the camera.

Â Know that you must call init_camera() before
using the camera.

Â Know that you must call track_update() to
refresh the tracking data stored in the
camera.

19

Final Exam Review

Â Know the basic blob tracking functions:
Â int track_size (int ch, int i);

ÅReturns the size, in pixels, of blob number i on channel
ch.

Â int track_x (int ch, int i);

ÅReturns the x coordinate of the center of blob number i on
channel ch.

Â int track_y (int ch, int i);

ÅReturns the y coordinate of the center of blob number i on
channel ch.

Â int track_confidence (int ch, int i);

ÅReturns the confidence value (0-100) that blob i on
channel ch is the correct color.

ÅHigher numbers mean better confidence.

20

Final Exam Review
Continued

Â Session 7

Â Know what BEMF is

Â Know the basic BEMF motor control functions.
Ålong get_motor_position_counter(int motor)

ÅThis function tells you the current position of the motor.

Åvoid set_motor_position_counter(int motor, long value)

ÅThis function sets the motor counter to the position you
specified without moving the motor. This is usually used to
set the number of the position to zero or another number
that is easy to work with.

Åvoid clear_motor_position_counter(int motor)

ÅThis function resets the motor counter to zero.

21

Final Exam Review
Continued

ÂSession 7 Continued
Åvoid move_at_velocity(int motor, int velocity)
ÅThis function will attempt to move the specified motor

at the velocity between -1000 and 1000 pulses per
second. You can also use the shorthand -

Åvoid mav(int motor, int velocity).

Åvoid move_to_position(int motor, int speed , long
goal_pos)
ÅThis function will move the motor to the position goal

specified at the speed chosen by the user. Note that
we call it óspeedô because it is always positive;
the polarity of the position goal determines
direction. This also works with the shorthand -

Åmtp(int motor, int speed, long goal_pos).

22

Final Exam Review
Continued

Â Session 7
Åvoid move_relative_position(int motor, int speed , long

delta_pos)

ÅThis function moves the motor delta_pos (change in
position) units at the specified speed. The shorthand
for this function is -

Åmrp(int motor, int speed, long delta_pos).

Åint get_motor_done(int motor)
ÅThis function will tell you if the motor is currently

executing a command, returning a zero if it is and a
one if it isnôt.

Åvoid block_motor_done(int motor)
ÅThis function will pause until the specified motor

finishes its current command, so you can avoid
sending commands to a motor before it finishes the
last command.

ÅThis function has a shorthand - bmd(int motor).

23

Final Exam Review

ÂSession 7 Continued

ÂKnow how to multi-task in IC

int start_process(<function_name>(<arg1>, <arg2>,

. . .));

ÅUsed to get a process to start running in the
back ground.

ÅReturns an int that is the process ID of the
process.

void kill_process(<process_id>);

ÅStops the process indicated by process_id.

24

Final Exam Review

Â Session 8
Â Know that the color temperature of each

frame is set with the white balance option.
Åint camera_get_wb_color_temp(int color[]);

ÅReturns a 2 element array corresponding to the red
and blue levels.

Åint camera_set_wb_color_temp(int color[]);

Åcolor[] is a two element array which is the red and
blue levels to use.

Åcolor[0] = red.

Åcolor[1] = blue.

Å8 bit numbers (0-255).

ÅLower numbers filter out more of that color.

25

Final Exam Review

ÂWhew ïdone with review.

ÂLots of information covered during
this course!

Â30 multiple choice questions.

26

Odometry

ÂMeasuring distance based upon wheel
rotations.

Â Concept first written about in 27 B.C by
Vitruvius.
Â Used a complex series of gears to measure

distance of chariot wheels.

ÂMany wheeled and tracked robots use
odometry to estimate their distance
from a fixed object.

ÂOdometry is an EXTREMELY valuable tool
in Botball.

27

Parameters We Need to
Know Before We Begin.

Â The circumference of the robots wheels.
ÂMeasure the diameter of your robots wheels in

cm.
ÅC = pi * D

ÂWheel base of the robot.
ÂMeasure the distance from one wheel to the

next in cm.

ÂNumber of BEMF pulses per wheel
rotation.
Â See on screen demonstration

28

Measuring Straight Line
Distance.

ÂThe robots straight line distance (d)
is the number of wheel rotations *
wheel circumference (C).
ÂExample:
ÅC = 10cm

Å# rotations = 6.5

Åd = 100mm * 6.5 rotations = 65cm

Â#rotations = pulses traveled /
pulses per rotation

29

Example

ÂWheel Diameter(D) = 3.18 cm
Â C = pi*D

ÂWheel C = 3.14159 *3.18cm = ~10cm

Â Pulses per rotation = 1000

Â Total pulses traveled = 3500

ÂHow far has our robot traveled?
Â#rotations = pulses traveled / pulses per

rotation
Å#rotations = 3500 / 1000 = 3.5 rotations

Â d = number of wheel rotations * wheel
circumference.
Åd = 3.5 rotations * 10cm = 35cm

30

Measuring Straight Line Distance
(Other Things We Can Find Out)

ÂWheel circumference / number of pulses
per rotation = dist traveled per BEMF
pulse.
Â Example.
ÅC = 10cm.

ÅPulses per rotation = 1000.

Åd per pulse = 10cm/1000ppr = 0.01 cm per pulse.

Â If we multiply dist per pulse by the total
pulses traveled we have the total distance
traveled.
Â Example:
ÅTotal BEMF pulses = 2000.

Å0.01 cm per pulse * 2000 = 20cm traveled.

31

A Trick to Help Both Motors Travel
Relatively the Same Velocity.

ÂThe BEMF encoders are not perfect.

ÂAll DC motors are slightly different.
ÂDifferent motors will return a different

of BEMF pulses.

ÂTwo easy ways around this.
ÂChoose motors that return a similar #

of BEMF pulses per motor rotation.

ÂApply a delta_vel to the faster motor to
slow it down ïsee next slide.

32

Applying a delta_vel to the
Faster Motor.

ÂDetermine which motor is rotating faster.

Â Set a variable called delta_vel that is
negative. Apply this variable to your
BEMF motor functions for that motor.
Â int delta_vel = -50

Â mav(LEFT_MOTOR, vel);

Â mav(RIGHT_MOTOR, vel + delta_vel);

Â Requires experimentation to get it right.

33

Implementing a Straight
Line Function in IC.

ÂWe should be able to pass the
following parameters to our
functions:
Â int vel- The speed of the motor in

clicks/sec

Â float dist- The distance in CM to travel.

ÂThe function should cause the
wheels to rotate the set number of
CM.

34

#define Statements for Our
Straight Line Function.

#define LEFT_MOTOR 0

#define RIGHT_MOTOR 2

#define LEFT_CLICKS_PER_ROT 350 /*WHEEL ROTATIONS!
NOT motor rotations!*/

#define RIGHT_CLICKS_PER_ROT 350 /*WHEEL
ROTATIONS! NOT motor rotations! */

#define WHEEL_DIAMETER 1.5 /* in cm */

#define PI 3.14159

float wheel_circumference = WHEEL_DIAMETER*PI; //in cm

Â These will need to be set to your robots
parameters!

35

An Algorithm for
Implementing the Function.

1. Calculate how many BEMF pulses to move the
motor.

1. float
left_total_clicks_to_travel=(dist/wheel_circumference
)*(float)LEFT_CLICKS_PER_ROT

2. float
right_total_clicks_to_travel=(dist/wheel_circumferenc
e)*(float)RIGHT_CLICKS_PER_ROT

2. Use the mrp function to move the motors to
the desired relative position.

1. mrp(LEFT_MOTOR, vel, (long)left_total_clicks_to_travel).

2. mrp(RIGHT_MOTOR, vel,
(long)right_total_clicks_to_travel).

3. Use a while loop to test if each motor has
completed its move.

36

Assignmenté

Â Write a function called travel_dist.
Â travel_dist takes the following parameters:

Åint vel- The speed of the motor in clicks/sec.

Åfloat dist- The distance IN CM to travel.

Â Will cause your robot to travel in a straight line
for a set #of cm.

Â Function definition looks like the following:
Â void travel_dist(int vel, float dist).

Â Use the function to make your robot travel the
set number of cm.

Â Write another function that when passed a
number of BEMF pulses it will return the distance
in cm that number of BEMF pulses corresponds
to for either motor.

37

/*

Function: travel_dist

Purpose: Will cause two wheels to travel a certain number of cm (it is possible to use more or less wheels)

Parameters:

int vel- The speed to travel in clicks/sec

float dist- The distance in cm to travel

*/

void travel_dist(int vel, float dist)

{

//First calculate how far to travel in clicks

float left_total_clicks_to_travel=(dist/wheel_circumference)*(float)LEFT_CLICKS_PER_ROT;

float right_total_clicks_to_travel=(dist/wheel_circumference)*(float)LEFT_CLICKS_PER_ROT;

mrp(LEFT_MOTOR, vel, (long)left_total_clicks_to_travel);

mrp(RIGHT_MOTOR, vel, (long)right_total_clicks_to_travel);

while((get_motor_done(LEFT_MOTOR) == 0) || (get_motor_done(RIGHT_MOTOR) ==0))

{ };

ao(); // turn off both motors when one is done to keep from turning

}

float return_dist(int bemf_pulses, int motor_num)

{

if (motor_num == LEFT_MOTOR)

{

return (float) ((float)(bemf_pulses/LEFT_CLICKS_PER_ROT) * wheel_circumference);

}

else if (motor_num == RIGHT_MOTOR)

{

return (float) ((float)(bemf_pulses/RIGHT_CLICKS_PER_ROT) * wheel_circumference);

}

}

